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Achieving Full Diversity over the MIMO Fading Channel with
Space-Time Precoders and Iterative Linear Receivers

Ghassan M. Kraidy, Member, IEEE, and Pierluigi Salvo Rossi, Member, IEEE

Abstract—We study the performance of space-time bit-
interleaved coded modulation (ST-BICM) over quasi-static
multiple-antenna fading channels with linear receivers. We show
that, under iterative linear detection and decoding, an ST-BICM
can achieve full diversity with a special class of space-time
precoders. We then study the outage probability at the output of
the linear detector that determines the theoretical performance
of coded modulations with such receivers. Finally, symbol and
word error rate performances under Monte Carlo simulations
are shown.

Index Terms—Diversity techniques, iterative decoding, MMSE
receivers, space-time precoding.

I. INTRODUCTION

MULTIPLE-ANTENNA techniques have been shown to
provide high transmission rates over fading channels

[1] and help in increasing the diversity order of signals over
slow fading channels [2]. For uncoded systems, i.e. systems
not employing error correction coding, achieving maximum
diversity requires the use of space-time codes together with
maximum likelihood (ML) receivers [3]. For coded systems,
a posteriori probability detectors are required to recover
maximum diversity at the receiver end [4], [5], [6]. In both
cases, the complexity at the detector increases exponentially
with the number of transmit antennas. On the other hand, lin-
ear receivers for uncoded transmission over multiple-antenna
quasi-static fading channels have been extensively studied [7],
[8], [9], [10], [11], and the achieved diversity orders are far
from being optimal even with full-rate space-time precoders
[12], [13]. With orthogonal space-time codes, linear receivers
can achieve full diversity at the cost of low rate transmission
[14]. In this work, we show that by concatenating coded
modulations with full-rate space-time precoders, an iterative
receiver can recover maximum diversity with a soft-input soft-
output (SISO) linear detector [15]. We then study the outage
probability [16] of such receivers that provide an information
theoretic lower bound on the performance and thus give insight
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Fig. 1. ST-BICM encoder.

on the achievable diversity orders. The paper is organized as
follows: Section II gives the system model and the notations
used in the rest of the paper. In Section III, we give the
equations for the linear detectors. In Section IV, an analysis
of the diversity order for iterative linear receivers is provided,
and the design of space-time precoders for such receivers
is proposed. Section V gives the outage probability analysis
of linear receivers. In Section VI, we show Monte Carlo
simulations with iterative receivers and Section VII gives the
concluding remarks.

II. SYSTEM MODEL AND NOTATIONS

We consider a system transmitting via a space-time bit-
interleaved coded modulation [17] over a quasi-static fre-
quency non-selective MIMO fading channel with 𝑛𝑡 transmit
and 𝑛𝑟 receive antennas, i.e. a codeword undergoes one
temporal channel realization. The channel model is written
as:

y = HSz+w , (1)

where y ∈ ℂ𝑠𝑛𝑟 and z ∈ Ω = (2𝑚 − PSK)𝑠𝑛𝑡 are the vectors
of received and transmitted complex symbols, respectively,
𝑚 being the number of bits per Phase Shift Keying (PSK)
modulated symbol, and 𝑠 being the time spreading of a
linear unitary space-time precoding matrix S of dimensions
𝑠𝑛𝑡×𝑠𝑛𝑡, also called space-time rotation. The MIMO channel
matrix H with dimensions 𝑠𝑛𝑟 × 𝑠𝑛𝑡 is diagonal and given
by:

H = I𝑠 ⊗ℋ , (2)

where ⊗ denotes Kronecker product, I𝑠 is the 𝑠 × 𝑠 identity
matrix, and ℋ has dimensions 𝑛𝑟 × 𝑛𝑡 and has independent
complex Gaussian entries ℎ𝑖𝑗 with zero mean and unit variance
representing the channel gain from the 𝑗th transmit to the
𝑖th receive antennas. The length-𝑠𝑛𝑟 vector of additive white
Gaussian noise components w is assumed to be circularly
symmetric with zero mean and variance 𝑁0. Digital transmis-
sion operates as shown in Fig. 1: information bits are fed to
an encoder of rate 𝑅𝑐 ≤ 1. The codeword c is first interleaved,
fed to a 2𝑚-PSK mapper, and then space-time precoded. The
space-time precoder combines 𝑠𝑛𝑡 PSK symbols over the
𝑛𝑡 transmit antennas and over 𝑠 time periods. The resulting
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Fig. 2. ST-BICM iterative linear detector and decoder.

frame is sent over the fading channel through the 𝑛𝑡 transmit
antennas, and the total transmission rate is : 𝑅 = 𝑚𝑛𝑡𝑅𝑐.
The channel coefficients are supposed to be perfectly known
to the receiver, but not to the transmitter. At the receiver,
a linear detector, following parallel interference cancellation
(PIC), provides extrinsic probabilities on modulated symbols
based on the received symbols, the channel matrix, and the
a priori probabilities on coded bits fed back from the SISO
decoder, as shown in Fig. 2.

III. ITERATIVE LINEAR DETECTORS

At the output of the channel, the vector y is fed to a linear
SISO detector [15] [18] that takes into account the a priori
information fed from the SISO channel decoder. The detector
can be a Zero Forcing (ZF) or Minimum Mean-Square Error
(MMSE) detector. In the sequel, we will consider:

G = HS , (3)

to be the channel seen by the PSK symbols. Now let 𝑧𝑗 denote
the a priori-based mean of the complex transmitted symbol
𝑧𝑗 (𝑗 = 1, ⋅ ⋅ ⋅ , 𝑠𝑛𝑡) computed using the a priori probabilities
𝜋(𝑐𝑏) on coded bits fed back from the SISO decoder as :

𝑧𝑗 =
∑
𝑧𝑗

𝑧𝑗

𝑚.𝑗+𝑚−1∏
𝑏=𝑚.𝑗

𝜋(𝑐𝑏) , (4)

and define z̄𝑗 = z̄−𝑧𝑗e
𝑗
𝑠𝑛𝑡

a vector containing the interference
experienced by the 𝑗th symbol from the 𝑠𝑛𝑡−1 other symbols
in the space-time vector. The vector e𝑗𝑠𝑛𝑡

of length 𝑠𝑛𝑡

contains a value of 1 at position 𝑗 and 0 elsewhere. The
unbiased estimation of 𝑧𝑗 , obtained via PIC followed by linear
MMSE filtering [18], is:

𝑧𝑗 = g†
𝑗

(
GΓ𝑗G

† + 𝛼I𝑠𝑛𝑟

)−1
ỹ𝑗 , (5)

where .† is the transpose conjugate operator, g𝑗 = Ge𝑗𝑠𝑛𝑡
and

ỹ𝑗 = y −Gz̄𝑗 represents the residual term after interference
cancellation, and Γ𝑗 is a diagonal matrix whose 𝑛th entry is
given by:

Γ𝑗𝑛 =

{
1− ∣𝑧𝑛∣2 𝑛 ∕= 𝑗

1 𝑛 = 𝑗
,

and is computed at every iteration from the a priori probabil-
ities fed from the SISO decoder. Note that 𝛼 = 2𝑁0 in the
case of MMSE detection. However, although it should be zero
for ZF detectors, we will show in the sequel that this is not
possible in most cases.

IV. DIVERSITY OF LINEAR RECEIVERS OVER

QUASI-STATIC FADING CHANNELS

A. Linear receivers for uncoded systems

For uncoded systems, the linear detector has exactly the
same expression as that of (5) without any prior knowledge
on the symbol estimates, i.e. 𝑧𝑛 = 0 ∀ 𝑛. The signal-to-
interference-and-noise ratio (SINR) of the 𝑗th symbol is thus
computed as [7] :

𝛾𝑗 = g†
𝑗

(
Ĝ𝑗Ĝ

†
𝑗 + 𝛼I𝑠𝑛𝑟

)−1

g𝑗 , (6)

where Ĝ𝑗 ∈ ℂ𝑠𝑛𝑟×(𝑠𝑛𝑡−1) is obtained by removing column g𝑗

from G. The random variable in (6) has been shown to follow
a 𝜒2 distribution with 2(𝑛𝑟 − 𝑛𝑡 + 1) degrees of freedom
[8], [9], [10], [11]. Hence, the maximum diversity order of
uncoded linear receivers over quasi-static channels is:

𝑑𝑢 = lim
𝑆𝐼𝑁𝑅→∞

− log(𝑃𝑒)

log(𝑆𝐼𝑁𝑅)
= 𝑛𝑟 − 𝑛𝑡 + 1 , (7)

where 𝑃𝑒 is the error probability. Even with the use of a
space-time code, uncoded MMSE receivers cannot attain full
diversity [12], [13]. Only for small transmission rates (i.e.
𝑅 < 𝑛𝑡 log

(
𝑛𝑡

𝑛𝑡−1

)
), MMSE receivers can recover maximum

diversity 𝑑𝑚𝑎𝑥 = 𝑛𝑡𝑛𝑟.

B. Iterative linear receivers for coded systems

With an iterative receiver, soft information is exchanged
between the detector and the channel decoder, and interference
between transmit antennas can be removed more efficiently.
First, let us consider the channel seen at the output of the
linear detector for every symbol, provided that the interference
is totally removed between symbols. We have that:

𝑧𝑗 = 𝜇𝑗𝑧𝑗 + 𝑤𝑗 , (8)

with the mean 𝜇𝑗 written as:

𝜇𝑗 = g†
𝑗

(
g𝑗g

†
𝑗 + 𝛼I𝑠𝑛𝑟

)−1

g𝑗 (9)

= g†
𝑗Ω

−1
𝑗 g𝑗 . (10)

and 𝑤𝑗 being the equivalent noise term with variance 𝜎𝑤𝑗 =
𝜇𝑗 (1− 𝜇𝑗) [19]. The matrix Ω𝑗 being a 𝑠𝑛𝑟×𝑠𝑛𝑟 Hermitian
matrix, one can see that, for 𝑛𝑟 > 1, we should have 𝛼 > 0
for the matrix to be non-singular and thus invertible. Hence, a
classical ZF detector where 𝛼 = 0 is not feasible for iterative
receivers. If 𝛼 > 0, and after eigenvalue decomposition, Ω𝑗

can be written as:

Ω𝑗 = D𝑗Λ𝑗D
−1
𝑗 , (11)

where D𝑗 is the 𝑠𝑛𝑟×𝑠𝑛𝑟 matrix containing the eigenvectors
of Ω𝑗 , and the non-zero diagonal entries 𝜆𝑖 of Λ𝑗 are the
corresponding eigenvalues. Now by inverting Ω𝑗 , we obtain:

Ω−1
𝑗 = D−1

𝑗 Λ−1
𝑗 D𝑗 = D†

𝑗Λ
−1
𝑗 D𝑗 , (12)

where the second equality holds because Ω𝑗 is Hermitian, thus
D𝑗 is a rotation. Now inserting (12) into (10), we obtain:

𝜇𝑗 = g†
𝑗D

†
𝑗Λ

−1
𝑗 D𝑗g𝑗 = f†𝑗Λ

−1
𝑗 f𝑗 . (13)
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The distribution of g𝑗 being invariant after rotation, g𝑗 and f𝑗
have the same distribution, and we thus obtain that:

𝜇𝑗 = f†𝑗Λ
−1
𝑗 f𝑗 =

𝑠𝑛𝑟∑
𝑖=1

∣𝑓𝑖∣2
𝜆𝑖

(14)

follows a 𝜒2 distribution with 2𝑠𝑛𝑟 degrees of freedom.
This means that, if the a priori information fed from the
channel decoder is perfectly reliable, maximum diversity 𝑛𝑡𝑛𝑟

is attained when using a full-spreading (i.e. 𝑠 = 𝑛𝑡) space-
time rotation. In other words, without a space-time rotation,
the receiver sees 𝑛𝑡 interfering single-input multiple-output
(SIMO) fading sub-channels carrying each a diversity order
of 1 × 𝑛𝑟. With a space-time precoder, the receiver sees 𝑠𝑛𝑡

interfering SIMO fading sub-channels having each a diversity
order of 1 × 𝑠𝑛𝑟. Hence, all PSK symbols can potentially
achieve full diversity at a cost of a stronger interference. For
this reason, the choice of the space-time rotation that allows
for interference suppression is crucial.

C. Design of space-time precoders for iterative linear re-
ceivers

As explained in the previous section, every transmitted
symbol 𝑧𝑗 achieves full diversity when a full-spreading space-
time rotation is used, provided interference is totally removed.
For this reason, the critical part of the detector in (5) is the
interference cancellation operation, given by:

ỹ𝑗 = y −Gz̄𝑗 (15)

= G (z− z̄𝑗) +w . (16)

To have a closer look on G, let us first write the space-time
rotation matrix as:

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜃11,1 𝜃11,2 ⋅ ⋅ ⋅ 𝜃11,𝑠𝑛𝑡

...
...

...
...

𝜃1𝑛𝑡,1 𝜃1𝑛𝑡,2 ⋅ ⋅ ⋅ 𝜃1𝑛𝑡,𝑠𝑛𝑡

...
...

...
...

𝜃𝑠1,1 𝜃𝑠1,2 ⋅ ⋅ ⋅ 𝜃𝑠1,𝑠𝑛𝑡

...
...

...
...

𝜃𝑠𝑛𝑡,1 𝜃𝑠𝑛𝑡,2 ⋅ ⋅ ⋅ 𝜃𝑠𝑛𝑡,𝑠𝑛𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (17)

where the entries 𝜃ℓ𝑢,𝑣 are complex numbers. We then have
(18) at the top of the next page, where the Φ𝑝 are 𝑛𝑡 × 𝑠𝑛𝑡

matrices. Now let us compute the covariance matrix of the
equivalent channel matrix G as:

C = 𝔼
[
GG†] = 𝔼

⎡
⎢⎣

Φ1Φ
†
1 ⋅ ⋅ ⋅ Φ1Φ

†
𝑠

...
...

...
Φ𝑠Φ

†
1 ⋅ ⋅ ⋅ Φ𝑠Φ

†
𝑠

⎤
⎥⎦ . (19)

In order for the interference encountered by the 𝑠𝑛𝑡 PSK
symbols to be independent, the covariance matrix C should
be a scaled identity matrix. First, by considering the block-
diagonal part of C, i.e. the entries at Φ𝑝Φ

†
𝑝, only diagonal

terms remain as channel coefficients are independent. Second,
for the off-block-diagonal entries of C to be null, i.e. for Φ𝑝Φ

†
𝑞

∀ 𝑝 ∕= 𝑞, the 𝑠 sub-parts of every column in S should be
orthogonal to each other, i.e.:

< Θ𝑏
𝑟,Θ

𝑑
𝑟 >= 0 ∀ 𝑟, 𝑏 ∕= 𝑑 , (20)

with

Θ𝑏
𝑟 =

[
𝜃𝑏1,𝑟, ⋅ ⋅ ⋅ , 𝜃𝑏𝑛𝑡,𝑟

]𝑡
, (21)

where .𝑡 denotes the transpose operator. Finally, the space-
time precoder should ensure that the 𝑠𝑛𝑡 transmitted symbols
encounter the same residual interference-plus-noise variance.
The reason is that usually, in multi-user detection, PIC is most
efficient when all the users have equal power [20]. It is thus
necessary that the symbols at the output of the equivalent
channel G have equal power so that, after PIC, they face
residual interference having the same variance. This property
is ensured if the 𝑠 sub-parts of every column of the space-
time rotation S have equal norm, and we thus obtain that
G (z− z̄𝑗) ∼ 𝒩

(
0,
(
Θ𝑏

𝑟

)†
Θ𝑏

𝑟I𝑠𝑛𝑡

)
∀ 𝑟, 𝑏. If this property

is not ensured, a situation similar to the near-far problem in
multi-user detection will occur, in which the dominance of cer-
tain sub-channels over others leads to performance degradation
[21]. Moreover, the equal-norm property of the subparts of
every column leads to the fact that the eigenvalues of Ω𝑗 will
be all equal and thus the coding gain is enhanced, as shown
with a posteriori probability (APP) detectors in [4]. The equal-
norm and orthogonal sub-parts conditions, called the “Genie
conditions” in [22], are also necessary for optimal iterative
APP detection and decoding over MIMO channels. They
also correspond to the properties of Unitary Trace-Orthogonal
Space-Time Block Codes [12] that allow for optimal uncoded
performance of MMSE receivers. Finally, it should be noted
that, as detection complexity in (5) is proportional to 𝑠, partial-
spreading rotations (with 𝑠 < 𝑛𝑡) can be used at the cost of
lower diversity orders. Dispersive Nucleo Algebraic (DNA)
space-time precoders [4], that exist for 𝑠 ∈ [1, ⋅ ⋅ ⋅ , 𝑛𝑡] and
satisfy the “Genie conditions”, allow to achieve a diversity
order of 𝑠𝑛𝑟 over MIMO channels with linear detectors as
well.

V. OUTAGE PROBABILITY OF MMSE SISO DETECTORS

In this section, we provide an information-theoretic lower
bound on the performance of iterative MMSE receivers.
Namely, we compute the Gaussian input outage probability
[16] at the output of the MMSE detector. As discussed in
[10], [11], two encoding strategies can be considered: separate
spatial encoding where symbols are encoded by independent
codes, and joint spatial encoding, where a single stream of
coded bits is demultiplexed onto 𝑠𝑛𝑡 streams and sent through
PSK symbols. The first strategy is the most vulnerable in terms
of outage probability, as a global outage event occurs if any of
the 𝑠𝑛𝑡 streams is in outage. For this reason, we will consider
the study of outage probability under separate spatial encoding
for the SISO MMSE detector to show its superiority even
in the worst case scenario. Based on (4), we consider that
the symbol 𝑧𝑗 sees an equivalent Additive White Gaussian
Noise (AWGN) channel with mean 𝜇𝑗 as in (14) and variance
𝜎2
𝑗 = 𝜇𝑗 (1− 𝜇𝑗) [19]. The outage probability per symbol is

thus given by [10]:

𝑃𝑜𝑢𝑡 = 1−
(
𝑃

[
ℐ (𝑧; 𝑧) ≥ 𝑠𝑅

𝑠𝑛𝑡

])𝑠𝑛𝑡

(22)

= 1− (𝑃 [log2 (1 + 𝜌𝑗𝜇𝑗) ≥ 𝑅𝑐𝑚])
𝑠𝑛𝑡 , (23)
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G = HS =

⎡
⎢⎣

Φ1

...
Φ𝑠

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑𝑛𝑡

𝑎=1 ℎ1,𝑎𝜃
1
𝑎,1

∑𝑛𝑡

𝑎=1 ℎ1,𝑎𝜃
1
𝑎,2 ⋅ ⋅ ⋅ ∑𝑛𝑡

𝑎=1 ℎ1,𝑎𝜃
1
𝑎,𝑠𝑛𝑡

...
...

...
...∑𝑛𝑡

𝑎=1 ℎ𝑛𝑟,𝑎𝜃
1
𝑎,1

∑𝑛𝑡

𝑎=1 ℎ𝑛𝑟,𝑎𝜃
1
𝑎,2 ⋅ ⋅ ⋅ ∑𝑛𝑡

𝑎=1 ℎ𝑛𝑟,𝑎𝜃
1
𝑎,𝑠𝑛𝑡

...
...

...
...∑𝑛𝑡

𝑎=1 ℎ1,𝑎𝜃
𝑠
𝑎,1

∑𝑛𝑡

𝑎=1 ℎ1,𝑎𝜃
𝑠
𝑎,2 ⋅ ⋅ ⋅ ∑𝑛𝑡

𝑎=1 ℎ1,𝑎𝜃
𝑠
𝑎,𝑠𝑛𝑡

...
...

...
...∑𝑛𝑡

𝑎=1 ℎ𝑛𝑟,𝑎𝜃
𝑠
𝑎,1

∑𝑛𝑡

𝑎=1 ℎ𝑛𝑟,𝑎𝜃
𝑠
𝑎,2 ⋅ ⋅ ⋅ ∑𝑛𝑡

𝑎=1 ℎ𝑛𝑟,𝑎𝜃
𝑠
𝑎,𝑠𝑛𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (18)
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Fig. 3. MMSE detector, outage probability with separate encoding, Gaussian
input, 𝑅 = 12 bits/s/Hz.

where 𝜌𝑗 = 𝑚𝑅𝑐

𝜎2
𝑗

. Fig. 3 shows the outage probability com-
parisons between uncoded and coded MMSE receivers over
quasi-static MIMO fading channels with 𝑛𝑡 = 2. The overall
rate is 𝑅 = 12 bits/s/Hz. For uncoded MMSE detectors, even
with a space-time rotation, a diversity order of 𝑛𝑟 −𝑛𝑡 +1 is
achieved, as shown by the violet curves. For coded systems,
a diversity order of 𝑛𝑟 is achieved for systems not employing
a space-time precoder (i.e. unrotated systems) (blue curves)
and 𝑑𝑚𝑎𝑥 = 𝑛𝑡𝑛𝑟 is achieved with a full-spreading space-
time rotation (red curves). A space-time precoder thus leads
every modulated symbol to achieve full diversity provided the
interference between symbols is totally removed. It should
be noted that the Golden Code rotation [23], that is optimal
with ML detection, does not provide optimal performance with
coded MMSE transmission. The reason is that it does not
satisfy the equal-norm property, leading to the fact that the
eigenvalues of Ω𝑗 are not equal.

VI. SIMULATION RESULTS

In this section, symbol and word error rate performance
of ST-BICM with linear receivers are shown. The code used
is the 16-state non-recursive non-systemmatic convolutional
(NRNSC) code with generator polynomials (23, 35)8, and
the interleavers are pseudo-randomly generated. We consider
Quadrature Phase Shift Keying (QPSK) modulation with Gray
mapping, so the extrinsic probabilities at the output of the
detector are given by:

𝜉(𝑐2𝑛) = 2ℜ(𝑧𝑛)− 1 , (24)

𝜉(𝑐2𝑛+1) = 2ℑ(𝑧𝑛)− 1 , (25)
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Fig. 4. MMSE detector, uncoded transmission, ideal (genie-aided) interfer-
ence cancellation, 𝑛𝑡 = 4, 𝑛𝑟 = 1, DNA precoders.
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Fig. 5. ST-BICM with linear detectors, iterative interference cancellation,
𝑛𝑡 = 2, 𝑛𝑟 = 1, 𝑁 = 1024.

with 𝑛 = 0, ⋅ ⋅ ⋅ , 𝑁/2− 1, and where 𝑁 is the number of bits
per codeword. The space-time precoders are the full-rate DNA
precoders that satisfy the properties of Section IV-C. In Fig.
4, symbol error rate performance of the uncoded genie-aided
MMSE detector is shown over the 4 × 1 quasi-static fading
channel, in which interference was removed in the simulation
(i.e. we set : 𝑧𝑗 = 𝑧𝑗 ∀𝑗 in (5)). The three curves represent
transmission without rotation (𝑠 = 1), partial-spreading DNA
rotation (𝑠 = 2), and full-spreading DNA rotation (𝑠 = 4). In
each case, a diversity order of 𝑠𝑛𝑟 is achieved, thus a full-
spreading rotation is required to recover maximum diversity.
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Fig. 6. ST-BICM with linear detectors, iterative interference cancellation,
𝑛𝑡 = 𝑛𝑟 = 2, 𝑁 = 1024.

In Fig. 5 and 6, word error rate performance of ST-BICM
with iterative interference cancellation for a codeword length
of 𝑁 = 1024 is shown for 2 × 1 (Fig. 5) and 2 × 2 (Fig.
6) MIMO quasi-static fading channels. The comparison of
both MMSE and ZF receivers (with 𝛼 = 0.05) is made
with outage probability for different space-time precoders. In
both figures, maximum diversity 𝑑𝑚𝑎𝑥 = 𝑠𝑛𝑟 is achieved
with DNA rotations and performance less than 2 dB from
outage probability is achieved, while the receivers fail to
remove the interference with both a random rotation [24]
and the Golden code rotation. Moreover, comparison is made
with optimal DNA precoded ST-BICM with APP detectors
[4], [5]. The MMSE detectors are obviously outperformed
by these detectors, but the APP detectors have a complexity
that is exponential in the number of transmit antennas (i.e.
proportional to 2𝑠𝑚𝑛𝑡 ). In addition, the gap between the two
types of detectors is reduced as the number of receive antennas
is increased, reaching less than 1 dB with 𝑛𝑟 = 2, as shown
in Fig. 6.

VII. CONCLUSIONS

We proposed space-time bit-interleaved coded modulations
that achieve maximum diversity over a multiple-antenna chan-
nel with iterative linear receivers. We show that, assuming in-
terference is totally removed between modulated symbols, the
linear detector attains maximum diversity using a space-time
rotation. Moreover, we show that, under specific properties
of the space-time rotation, the channel decoder is capable of
removing the interference between the transmitted symbols.
The outage probability of these receivers is then studied
in order to provide an information-theoretic bound on the
performance. We finally show symbol and word error rate
performances under Monte Carlo simulations.
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